Design and synthesis of a small molecular NIR-II chemiluminescence probe for in vivo - activated H 2 S imaging

Author:

Chen Zhongxiang1,Su Lichao1ORCID,Wu Ying2,Liu Jianyong1,Wu Rongrong1,Li Qian1,Wang Chenlu1,Liu Luntao1,Song Jibin2ORCID

Affiliation:

1. Ministry of Education (MOE) Key Laboratory for Analytical Science of Food Safety and Biology Institution, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China

2. State key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 10010, China

Abstract

Chemiluminescence (CL) with the elimination of excitation light and minimal autofluorescence interference has been wieldy applied in biosensing and bioimaging. However, the traditional emission of CL probes was mainly in the range of 400 to 650 nm, leading to undesired resolution and penetration in a biological object. Therefore, it was urgent to develop CL molecules in the near-infrared window [NIR, including NIR-I (650 to 900 nm) and near-infrared-II (900 to 1,700 nm)], coupled with unique advantages of long-time imaging, sensitive response, and high resolution at depths of millimeters. However, no NIR-II CL unimolecular probe has been reported until now. Herein, we developed an H 2 S-activated NIR-II CL probe [chemiluminiscence donor 950, (CD-950)] by covalently connecting two Schaap’s dioxetane donors with high chemical energy to a NIR-II fluorophore acceptor candidate via intramolecular CL resonance energy transfer strategy, thereby achieving high efficiency of 95%. CD-950 exhibited superior capacity including long-duration imaging (~60 min), deeper tissue penetration (~10 mm), and specific H 2 S response under physiological conditions. More importantly, CD-950 showed detection capability for metformin-induced hepatotoxicity with 2.5-fold higher signal-to-background ratios than that of NIR-II fluorescence mode. The unimolecular NIR-II CL probe holds great potential for the evaluation of drug-induced side effects by tracking its metabolites in vivo, further facilitating the rational design of novel NIR-II CL-based detection platforms.

Funder

Foundation for Innovative Research Groups of the National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3