Mapping secretome-mediated interaction between paired neuron–macrophage single cells

Author:

Deng Jiu1ORCID,Ji Yahui1,Zhu Fengjiao12,Liu Lina3,Li Linmei1,Bai Xue1ORCID,Li Huibing1ORCID,Liu Xianming1,Luo Yong4,Lin Bingcheng1,Lu Yao1

Affiliation:

1. Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China

4. Department of Pharmaceutical Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

Neuron-immune interaction through secreted factors contributes significantly to the complex microenvironment in the central nervous system that could alter cell functionalities and fates in both physiological and pathological conditions, which remains poorly characterized at the single-cell level. Herein, using a spatially patterned antibody barcode microchip, we realized the mapping of 12 different secretomes, covering cytokines, neurotrophic factors (NFs), and neuron-derived exosomes (NDEs) from high-throughput, paired single cells (≥ 600) simultaneously under normal conditions and an Alzheimer’s disease (AD) model induced with amyloid beta protein 1-42 (Aβ 1–42 ). We applied the platform to analyze the secretion profiles from paired neuron–macrophage and neuron–microglia single cells with human cell lines. We found that pairwise neuron–macrophage interaction would trigger immune responses and attenuate neuron cells’ secretion, while neuron–microglia interaction generally results in opposite outcomes in secretion. When neuron cells are induced with Aβ 1–42 protein into the AD model, both neuron–macrophage and neuron–microglia interactions lead to increased cytokines and NDEs and decreased NFs. Further analysis of AD patients’ serum showed that NDEs were significantly higher in patients’ samples than in the control group, validating our observation from the interaction assay. Furthermore, we resolved previously undifferentiated heterogeneity underlying the secretions from single-neuron cells. We found that the NDE and NF secretion was less dependent on the paracrine signaling between one another and that secretions from neuron cells would attenuate after differentiation with Aβ 1–42 . This study demonstrates the mapping of the different secretomes from paired neuron-immune single cells, providing avenues for understanding how neurons and immune cells interact through the complex secretome network.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3