In situ structural analysis reveals membrane shape transitions during autophagosome formation

Author:

Bieber Anna123,Capitanio Cristina23,Erdmann Philipp S.14,Fiedler Fabian5,Beck Florian16,Lee Chia-Wei17,Li Delong5,Hummer Gerhard389ORCID,Schulman Brenda A.23ORCID,Baumeister Wolfgang13,Wilfling Florian1235ORCID

Affiliation:

1. Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany

2. Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany

3. Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815

4. Human Technopole, 20157 Milan, Italy

5. Mechanisms of Cellular Quality Control, Max Planck Institute of Biophysics, 60438 Frankfurt a. M., Germany

6. CryoEM Technology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany

7. Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, MA 02115

8. Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt a. M., Germany

9. Institute of Biophysics, Goethe University Frankfurt, 60438 Frankfurt a. M., Germany

Abstract

Autophagosomes are unique organelles that form de novo as double-membrane vesicles engulfing cytosolic material for destruction. Their biogenesis involves membrane transformations of distinctly shaped intermediates whose ultrastructure is poorly understood. Here, we combine cell biology, correlative cryo-electron tomography (cryo-ET), and extensive data analysis to reveal the step-by-step structural progression of autophagosome biogenesis at high resolution directly within yeast cells. The analysis uncovers an unexpectedly thin intermembrane distance that is dilated at the phagophore rim. Mapping of individual autophagic structures onto a timeline based on geometric features reveals a dynamical change of membrane shape and curvature in growing phagophores. Moreover, our tomograms show the organelle interactome of growing autophagosomes, highlighting a polar organization of contact sites between the phagophore and organelles, such as the vacuole and the endoplasmic reticulum (ER). Collectively, these findings have important implications for the contribution of different membrane sources during autophagy and for the forces shaping and driving phagophores toward closure without a templating cargo.

Funder

Aligning Science Across Parkinson's

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3