Memory can induce oscillations of microparticles in nonlinear viscoelastic media and cause a giant enhancement of driven diffusion

Author:

Goychuk Igor1ORCID

Affiliation:

1. Institute for Multiscale Simulation, Friedrich-Alexander, University of Erlangen-Nürnberg, Cauerstraße 3 91058, Erlangen, Germany

Abstract

We investigate analytically and numerically a basic model of driven Brownian motion with a velocity-dependent friction coefficient in nonlinear viscoelastic media featured by a stress plateau at intermediate shear velocities and profound memory effects. For constant force driving, we show that nonlinear oscillations of a microparticle velocity and position emerge by a Hopf bifurcation at a small critical force (first dynamical phase transition), where the friction’s nonlinearity seems to be wholly negligible. They also disappear by a second Hopf bifurcation at a much larger force value (second dynamical phase transition). The bifurcation diagram is found in an analytical form confirmed by numerics. Surprisingly, the particles’ inertial and the medium’s nonlinear properties remain crucial even in a parameter regime where they were earlier considered entirely negligible. Depending on the force and other parameters, the amplitude of oscillations can significantly exceed the size of the particles, and their period can span several time decades, primarily determined by the memory time of the medium. Such oscillations can also be thermally excited near the edges of dynamical phase transitions. The second dynamical phase transition combined with thermally induced stochastic limit cycle oscillations leads to a giant enhancement of diffusion over the limit of vast driving forces, where an effective linearization of stochastic dynamics occurs.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3