Genomic and epigenetic landscapes drive CRISPR-based genome editing inBifidobacterium

Author:

Pan Meichen1,Morovic Wesley2,Hidalgo-Cantabrana Claudio1ORCID,Roberts Avery1,Walden Kimberly K. O.3,Goh Yong Jun1ORCID,Barrangou Rodolphe1ORCID

Affiliation:

1. Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695

2. IFF Health & Biosciences, International Flavors and Fragrances, Inc., Madison, WI 53716

3. Roy J. Carver Biotechnology Center, University of Illinois Urbana–Champaign, Urbana, IL 61801

Abstract

Bifidobacteriumis a commensal bacterial genus ubiquitous in the human gastrointestinal tract, which is associated with a range of health benefits. The advent of CRISPR-based genome editing technologies provides opportunities to investigate the genetics of important bacteria and transcend the lack of genetic tools in bifidobacteria to study the basis for their health-promoting attributes. Here, we repurpose the endogenous type I-G CRISPR-Cas system and adopt an exogenous CRISPR base editor for genome engineering inB. animalissubsp.lactis,demonstrating that both genomic and epigenetic contexts drive editing outcomes across strains. We reprogrammed the endogenous type I-G system to screen for naturally occurring large deletions up to 27 kb and to generate a 500-bp deletion intetWto abolish tetracycline resistance. A CRISPR-cytosine base editor was optimized to install C•G-to-T•A amber mutations to resensitize multipleB. lactisstrains to tetracycline. Remarkably, we uncovered epigenetic patterns that are distributed unevenly amongB. lactisstrains, despite their genomic homogeneity, that may contribute to editing efficiency variability. Insights were also expanded toBifidobacterium longumsubsp.infantisto emphasize the broad relevance of these findings. This study highlights the need to develop individualized CRISPR-based genome engineering approaches for distinct bacterial strains and opens avenues for engineering of next generation probiotics.

Funder

NCSU | College of Agriculture and Life Sciences, North Carolina State University

North Carolina Agricultural Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3