Affiliation:
1. Department of Physics, The Pennsylvania State University, University Park, PA 16802
2. Department of Physics, Princeton University, Princeton, NJ 08544
Abstract
An interplay between pairing and topological orders has been predicted to give rise to superconducting states supporting exotic emergent particles, such as Majorana particles obeying non-Abelian braid statistics. We consider a system of spin polarized electrons on a Hofstadter lattice with nearest-neighbor attractive interaction and solve the mean-field Bogoliubov–de Gennes equations in a self-consistent fashion, leading to gauge-invariant observables and a rich phase diagram as a function of the chemical potential, the magnetic field, and the interaction. As the strength of the attractive interaction is increased, the system first makes a transition from a quantum Hall phase to a skyrmion lattice phase that is fully gapped in the bulk but has topological chiral edge current, characterizing a topologically nontrivial state. This is followed by a vortex phase in which the vortices carrying Majorana modes form a lattice; the spectrum contains a low-energy Majorana band arising from the coupling between neighboring vortex-core Majorana modes but does not have chiral edge currents. For some parameters, a dimer vortex lattice occurs with no Majorana band. The experimental feasibility and the observable consequences of skyrmions as well as Majorana modes are indicated.
Funder
U.S. Department of Energy
DOD | USN | ONR | Office of Naval Research Global
New Initiative Research Grant Pittsburgh Foundation
Publisher
Proceedings of the National Academy of Sciences
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献