The role of baroclinic activity in controlling Earth’s albedo in the present and future climates

Author:

Hadas Or1ORCID,Datseris George2ORCID,Blanco Joaquin3ORCID,Bony Sandrine4ORCID,Caballero Rodrigo3ORCID,Stevens Bjorn2ORCID,Kaspi Yohai1ORCID

Affiliation:

1. Department of Earth and Planetary Sciences, Weizmann Institute of Science, 76100 Rehovot, Israel

2. Max-Planck-Institut fur Meteorologie, D-20146 Hamburg, Germany

3. Department of Meteorology, Stockholm University, 10691 Stockholm, Sweden

4. Sorbonne Université, Laboratoire de Météorologie Dynamique (LMD)/Institut Pierre Simon Laplace (IPSL), Centre National de la Recherche Scientique (CNRS), Univ Paris 06, 75252 Paris, France

Abstract

Clouds are one of the most influential components of Earth’s climate system. Specifically, the midlatitude clouds play a vital role in shaping Earth’s albedo. This study investigates the connection between baroclinic activity, which dominates the midlatitude climate, and cloud-albedo and how it relates to Earth’s existing hemispheric albedo symmetry. We show that baroclinic activity and cloud-albedo are highly correlated. By using Lagrangian tracking of cyclones and anticyclones and analyzing their individual cloud properties at different vertical levels, we explain why their cloud-albedo increases monotonically with intensity. We find that while for anticyclones, the relation between strength and cloudiness is mostly linear, for cyclones, in which clouds are more prevalent, the relation saturates with strength. Using the cloud-albedo strength relationships and the climatology of baroclinic activity, we demonstrate that the observed hemispheric difference in cloud-albedo is well explained by the difference in the population of cyclones and anticyclones, which counter-balances the difference in clear-sky albedo. Finally, we discuss the robustness of the hemispheric albedo symmetry in the future climate. Seemingly, the symmetry should break, as the northern hemisphere’s storm track response differs from that of the southern hemisphere due to Arctic amplification. However, we show that the saturation of the cloud response to storm intensity implies that the increase in the skewness of the southern hemisphere storm distribution toward strong storms will decrease future cloud-albedo in the southern hemisphere. This complex response explains how albedo symmetry might persist even with the predicted asymmetric hemispheric change in baroclinicity under climate change.

Funder

The israeli science foundation

European union's hourizon 2020 research and innovation progamme

Yotam project and the Weizmann institute sustainability and energy research initiative

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3