Predicting network dynamics without requiring the knowledge of the interaction graph

Author:

Prasse Bastian1ORCID,Van Mieghem Piet1ORCID

Affiliation:

1. Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, 2600 GA Delft, The Netherlands

Abstract

A network consists of two interdependent parts: the network topology or graph, consisting of the links between nodes and the network dynamics, specified by some governing equations. A crucial challenge is the prediction of dynamics on networks, such as forecasting the spread of an infectious disease on a human contact network. Unfortunately, an accurate prediction of the dynamics seems hardly feasible, because the network is often complicated and unknown. In this work, given past observations of the dynamics on a fixed graph, we show the contrary: Even without knowing the network topology, we can predict the dynamics. Specifically, for a general class of deterministic governing equations, we propose a two-step prediction algorithm. First, we obtain a surrogate network by fitting past observations of every nodal state to the dynamical model. Second, we iterate the governing equations on the surrogate network to predict the dynamics. Surprisingly, even though there is no similarity between the surrogate topology and the true topology, the predictions are accurate, for a considerable prediction time horizon, for a broad range of observation times, and in the presence of a reasonable noise level. The true topology is not needed for predicting dynamics on networks, since the dynamics evolve in a subspace of astonishingly low dimension compared to the size and heterogeneity of the graph. Our results constitute a fresh perspective on the broad field of nonlinear dynamics on complex networks.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3