Machine learning–based inverse design for electrochemically controlled microscopic gradients of O 2 and H 2 O 2

Author:

Chen Yi1,Wang Jingyu1ORCID,Hoar Benjamin B.1,Lu Shengtao1,Liu Chong12ORCID

Affiliation:

1. Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095

2. California NanoSystems Institute, University of California, Los Angeles, CA 90095

Abstract

A fundamental understanding of extracellular microenvironments of O 2 and reactive oxygen species (ROS) such as H 2 O 2 , ubiquitous in microbiology, demands high-throughput methods of mimicking, controlling, and perturbing gradients of O 2 and H 2 O 2 at microscopic scale with high spatiotemporal precision. However, there is a paucity of high-throughput strategies of microenvironment design, and it remains challenging to achieve O 2 and H 2 O 2 heterogeneities with microbiologically desirable spatiotemporal resolutions. Here, we report the inverse design, based on machine learning (ML), of electrochemically generated microscopic O 2 and H 2 O 2 profiles relevant for microbiology. Microwire arrays with suitably designed electrochemical catalysts enable the independent control of O 2 and H 2 O 2 profiles with spatial resolution of ∼10 1 μm and temporal resolution of ∼10° s. Neural networks aided by data augmentation inversely design the experimental conditions needed for targeted O 2 and H 2 O 2 microenvironments while being two orders of magnitude faster than experimental explorations. Interfacing ML-based inverse design with electrochemically controlled concentration heterogeneity creates a viable fast-response platform toward better understanding the extracellular space with desirable spatiotemporal control.

Funder

HHS | NIH | National Institute of General Medical Sciences

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference70 articles.

1. “Microbial ecosystems” in Brock Biology of Microorganisms, M. T. Madigan, J. M. Martinko, J. Parker, Eds. (Pearson Prentice Hall, Upper Saddle River, NJ, ed. 15, 2018), pp. 651–686.

2. Shallow breathing: bacterial life at low O2

3. Physiological heterogeneity in biofilms

4. The ecology and biogeochemistry of stream biofilms

5. Mimicking biofilm formation and development: Recent progress in in vitro and in vivo biofilm models

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3