Injury-induced MAPK activation triggers body axis formation in  Hydra by default Wnt signaling

Author:

Tursch Anja1ORCID,Bartsch Natascha12ORCID,Mercker Moritz3ORCID,Schlüter Jana4ORCID,Lommel Mark15ORCID,Marciniak-Czochra Anna3ORCID,Özbek Suat1ORCID,Holstein Thomas W.1ORCID

Affiliation:

1. Molecular Evolution & Genomics, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany

2. Department of Biological Sciences, Bergen University, 5020 Bergen, Norway

3. Institute of Applied Mathematics, Heidelberg University, 69120 Heidelberg, Germany

4. Department of Neurobiology, Interdisciplinary Center of Neurosciences, Heidelberg University, 69120 Heidelberg, Germany

5. Department of Microbiology, Saarland University, 66123 Saarbrücken, Germany

Abstract

Hydra ’s almost unlimited regenerative potential is based on Wnt signaling, but so far it is unknown how the injury stimulus is transmitted to discrete patterning fates in head and foot regenerates. We previously identified mitogen-activated protein kinases (MAPKs) among the earliest injury response molecules in Hydra head regeneration. Here, we show that three MAPKs—p38, c-Jun N-terminal kinases (JNKs), and extracellular signal-regulated kinases (ERKs)—are essential to initiate regeneration in Hydra, independent of the wound position. Their activation occurs in response to any injury and requires calcium and reactive oxygen species (ROS) signaling. Phosphorylated MAPKs hereby exhibit cross talk with mutual antagonism between the ERK pathway and stress-induced MAPKs, orchestrating a balance between cell survival and apoptosis. Importantly, Wnt3 and Wnt9/10c, which are induced by MAPK signaling, can partially rescue regeneration in tissues treated with MAPK inhibitors. Also, foot regenerates can be reverted to form head tissue by a pharmacological increase of β-catenin signaling or the application of recombinant Wnts. We propose a model in which a β-catenin-based stable gradient of head-forming capacity along the primary body axis, by differentially integrating an indiscriminate injury response, determines the fate of the regenerating tissue. Hereby, Wnt signaling acquires sustained activation in the head regenerate, while it is transient in the presumptive foot tissue. Given the high level of evolutionary conservation of MAPKs and Wnts, we assume that this mechanism is deeply embedded in our genome.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3