DNA damage reduces heterogeneity and coherence of chromatin motions

Author:

Locatelli Maëlle1ORCID,Lawrimore Josh2,Lin Hua3,Sanaullah Sarvath1ORCID,Seitz Clayton3,Segall Dave4,Kefer Paul4,Salvador Moreno Naike1ORCID,Lietz Benton1,Anderson Rebecca1,Holmes Julia1,Yuan Chongli5,Holzwarth George4ORCID,Bloom Kerry S.2ORCID,Liu Jing367,Bonin Keith48,Vidi Pierre-Alexandre189

Affiliation:

1. Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157

2. Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599

3. Department of Physics, Indiana University–Purdue University Indianapolis, Indianapolis, IN 46202

4. Department of Physics, Wake Forest University, Winston-Salem, NC 27109

5. Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907

6. Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202

7. Center for Computational Biology and Bioinformatics, Indiana University, Indianapolis, IN 46202

8. Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157

9. Laboratoire InGenO, Institut de Cancérologie de l’Ouest, 49055 Angers, France

Abstract

Chromatin motions depend on and may regulate genome functions, in particular the DNA damage response. In yeast, DNA double-strand breaks (DSBs) globally increase chromatin diffusion, whereas in higher eukaryotes the impact of DSBs on chromatin dynamics is more nuanced. We mapped the motions of chromatin microdomains in mammalian cells using diffractive optics and photoactivatable chromatin probes and found a high level of spatial heterogeneity. DNA damage reduces heterogeneity and imposes spatially defined shifts in motions: Distal to DNA breaks, chromatin motions are globally reduced, whereas chromatin retains higher mobility at break sites. These effects are driven by context-dependent changes in chromatin compaction. Photoactivated lattices of chromatin microdomains are ideal to quantify microscale coupling of chromatin motion. We measured correlation distances up to 2 µm in the cell nucleus, spanning chromosome territories, and speculate that this correlation distance between chromatin microdomains corresponds to the physical separation of A and B compartments identified in chromosome conformation capture experiments. After DNA damage, chromatin motions become less correlated, a phenomenon driven by phase separation at DSBs. Our data indicate tight spatial control of chromatin motions after genomic insults, which may facilitate repair at the break sites and prevent deleterious contacts of DSBs, thereby reducing the risk of genomic rearrangements.

Funder

HHS | NIH | National Cancer Institute

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3