DARPP32, a target of hyperactive mTORC1 in the retinal pigment epithelium

Author:

Cai Jiyang1ORCID,Litwin Christopher23,Cheng Rui4,Ma Jian-Xing4,Chen Yan235ORCID

Affiliation:

1. Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104

2. Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104

3. Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104

4. Department of Biochemistry, Wake Forest University Health Sciences, Winston Salem, NC 27157

5. Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104

Abstract

The mechanistic target of rapamycin (mTOR) is assembled into signaling complexes of mTORC1 or mTORC2, and plays key roles in cell metabolism, stress response, and nutrient and growth factor sensing. Accumulating evidence from human and animal model studies has demonstrated a pathogenic role of hyperactive mTORC1 in age-related macular degeneration (AMD). The retinal pigment epithelium (RPE) is a primary injury site in AMD. In mouse models of RPE-specific deletion of Tuberous sclerosis 1 ( Tsc1 ), which encodes an upstream suppressor of mTORC1, the hyperactivated mTORC1 metabolically reprogrammed the RPE and led to the degeneration of the outer retina and choroid (CH). In the current study, we use single-cell RNA sequencing (scRNA-seq) to identify an RPE mTORC1 downstream protein, dopamine- and cyclic AMP-regulated phosphoprotein of molecular weight 32,000 (DARPP-32). DARPP-32 was not found in healthy RPE but localized to drusen and basal linear deposits in human AMD eyes. In animal models, overexpressing DARPP-32 by adeno-associated virus (AAV) led to abnormal RPE structure and function. The data indicate that DARPP-32 is a previously unidentified signaling protein subjected to mTORC1 regulation and may contribute to RPE degeneration in AMD.

Funder

HHS | NIH | National Eye Institute

BrightFocus Foundation

HHS | NIH | National Institute of Environmental Health Sciences

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3