A Bayesian switching linear dynamical system for estimating seizure chronotypes

Author:

Wang Emily T.1ORCID,Vannucci Marina1ORCID,Haneef Zulfi23ORCID,Moss Robert4ORCID,Rao Vikram R.56ORCID,Chiang Sharon567ORCID

Affiliation:

1. Department of Statistics, Rice University, Houston, TX 77005

2. Department of Neurology, Baylor College of Medicine, Houston, TX 77030

3. Neurology Care Line, Veterans Affairs Medical Center, Houston, TX 77030

4. Seizure Tracker LLC, Springfield, VA 22151

5. Department of Neurology, University of California, San Francisco, CA 94115

6. Weill Institute for Neurosciences, University of California, San Francisco, CA 94115

7. Departments of Physiology and Psychiatry and the Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 94158

Abstract

Epilepsy is a disorder characterized by paroxysmal transitions between multistable states. Dynamical systems have been useful for modeling the paroxysmal nature of seizures. At the same time, intracranial electroencephalography (EEG) recordings have recently discovered that an electrographic measure of epileptogenicity, interictal epileptiform activity, exhibits cycling patterns ranging from ultradian to multidien rhythmicity, with seizures phase-locked to specific phases of these latent cycles. However, many mechanistic questions about seizure cycles remain unanswered. Here, we provide a principled approach to recast the modeling of seizure chronotypes within a statistical dynamical systems framework by developing a Bayesian switching linear dynamical system (SLDS) with variable selection to estimate latent seizure cycles. We propose a Markov chain Monte Carlo algorithm that employs particle Gibbs with ancestral sampling to estimate latent cycles in epilepsy and apply unsupervised learning on spectral features of latent cycles to uncover clusters in cycling tendency. We analyze the largest database of patient-reported seizures in the world to comprehensively characterize multidien cycling patterns among 1,012 people with epilepsy, spanning from infancy to older adulthood. Our work advances knowledge of cycling in epilepsy by investigating how multidien seizure cycles vary in people with epilepsy, while demonstrating an application of an SLDS to frame seizure cycling within a nonlinear dynamical systems framework. It also lays the groundwork for future studies to pursue data-driven hypothesis generation regarding the mechanistic drivers of seizure cycles.

Funder

HHS | NIH | National Institute of Neurological Disorders and Stroke

HHS | NIH | U.S. National Library of Medicine

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3