Evolution avoids a pathological stabilizing interaction in the immune protein S100A9

Author:

Harman Joseph L.12ORCID,Reardon Patrick N.3ORCID,Costello Shawn M.4ORCID,Warren Gus D.12,Phillips Sophia R.12,Connor Patrick J.12,Marqusee Susan567ORCID,Harms Michael J.12ORCID

Affiliation:

1. Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403

2. Institute of Molecular Biology, University of Oregon, Eugene, OR 97403

3. College of Science, NMR Facility, Oregon State University, Corvallis, OR 97331

4. Biophysics Graduate Program, University of California, Berkeley, Berkeley, CA 94720

5. Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720

6. Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720

7. California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720

Abstract

Stability constrains evolution. While much is known about constraints on destabilizing mutations, less is known about the constraints on stabilizing mutations. We recently identified a mutation in the innate immune protein S100A9 that provides insight into such constraints. When introduced into human S100A9, M63F simultaneously increases the stability of the protein and disrupts its natural ability to activate Toll-like receptor 4. Using chemical denaturation, we found that M63F stabilizes a calcium-bound conformation of hS100A9. We then used NMR to solve the structure of the mutant protein, revealing that the mutation distorts the hydrophobic binding surface of hS100A9, explaining its deleterious effect on function. Hydrogen–deuterium exchange (HDX) experiments revealed stabilization of the region around M63F in the structure, notably Phe37. In the structure of the M63F mutant, the Phe37 and Phe63 sidechains are in contact, plausibly forming an edge-face π-stack. Mutating Phe37 to Leu abolished the stabilizing effect of M63F as probed by both chemical denaturation and HDX. It also restored the biological activity of S100A9 disrupted by M63F. These findings reveal that Phe63 creates a molecular staple with Phe37 that stabilizes a nonfunctional conformation of the protein, thus disrupting function. Using a bioinformatic analysis, we found that S100A9 proteins from different organisms rarely have Phe at both positions 37 and 63, suggesting that avoiding a pathological stabilizing interaction indeed constrains S100A9 evolution. This work highlights an important evolutionary constraint on stabilizing mutations, namely, that they must avoid inappropriately stabilizing nonfunctional protein conformations.

Funder

HHS | NIH | National Institute of General Medical Sciences

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3