Narrow range of early habitable Venus scenarios permitted by modeling of oxygen loss and radiogenic argon degassing

Author:

Warren Alexandra O.1ORCID,Kite Edwin S.1ORCID

Affiliation:

1. Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637

Abstract

Whether Venus was ever habitable is a key question driving missions to Earth’s sister planet in the next decade. Venus today has a dry, O 2 -poor atmosphere, but recent work has proposed that early Venus may have had liquid water [J. Krissansen-Totton, J. J. Fortney, F. Nimmo, Planet. Sci. J. 2, 216 (2021)] and reflective clouds that could have sustained habitable conditions until 0.7 Ga [J. Yang, G. Boué, D. C. Fabrycky, D. S. Abbot, Astrophys. J. 787, L2 (2014), M. J. Way, A. D. Del Genio, J. Geophys. Res.: Planets 125, e2019JE006276 (2020)]. Water present at the end of a habitable era must since have been lost by photodissociation and H escape, causing buildup of atmospheric oxygen [F. Tian, Earth Planet. Sci. Lett. 432, 126–132 (2015)]. We present a time-dependent model of Venus’s atmospheric composition starting from the end of a hypothetical habitable era with surface liquid water. We find that O 2 loss to space, oxidation of reduced atmospheric species, oxidation of lava, and oxidation of a surface magma layer formed in a runaway greenhouse climate can remove O 2 from up to 500 m global equivalent layer (GEL) (30% of an Earth ocean), unless melts on Venus had a much lower oxygen fugacity than Mid Ocean Ridge melts on Earth, which increases the upper limit twofold. Volcanism is required to supply oxidizable fresh basalt and reduced gases to the atmosphere but also contributes 40 Ar. Consistency with Venus’s modern atmospheric composition occurs in less than 0.4% of runs, in a narrow parameter range where the reducing power introduced by O 2 loss processes can balance O 2 introduced by H escape. Our models favor hypothetical habitable eras ending before 3 Ga and very reduced melt oxygen fugacities three log units below the fayalite–magnetite–quartz buffer ( f O 2 < FMQ−3), among other constraints.

Funder

National Aeronautics and Space Administration

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3