Modes of Pangean lake level cyclicity driven by astronomical climate pacing modulated by continental position and p CO2

Author:

Landwehrs Jan12ORCID,Feulner Georg2ORCID,Willeit Matteo2ORCID,Petri Stefan2ORCID,Sames Benjamin1ORCID,Wagreich Michael1ORCID,Whiteside Jessica H.34,Olsen Paul E.5ORCID

Affiliation:

1. Department of Geology, University of Vienna, 1090 Vienna, Austria

2. Earth System Analysis, Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, D-14412 Potsdam, Germany

3. Ocean and Earth Science, National Oceanography Centre, University of Southampton, SO14 3ZH Southampton, United Kingdom

4. Department of Geological Sciences, San Diego State University, San Diego, CA 92182

5. Biology and Paleo Environment Division, Lamont-Doherty Earth Observatory of Columbia University, Palisades, 10968 NY

Abstract

Orbital cyclicity is a fundamental pacemaker of Earth’s climate system. The Newark–Hartford Basin (NHB) lake sediment record of eastern North America contains compelling geologic expressions of this cyclicity, reflecting variations of climatic conditions in tropical Pangea during the Late Triassic and earliest Jurassic (~233 to 199 Ma). Climate modeling enables a deeper mechanistic understanding of Earth system modulation during this unique greenhouse and supercontinent period. We link major features of the NHB record to the combined climatic effects of orbital forcing, paleogeographic changes, and atmospheric p CO 2 variations. An ensemble of transient, orbitally driven climate simulations is assessed for nine time slices, three atmospheric p CO 2 values, and two paleogeographic reconstructions. Climatic transitions from tropical humid to more seasonal and ultimately semiarid are associated with tectonic drift of the NHB from ~ 5   ° N to 20   ° N . The modeled orbital modulation of the precipitation–evaporation balance is most pronounced during the 220 to 200 Ma interval, whereas it is limited by weak seasonality and increasing aridity before and after this interval. Lower p CO 2 at around 205 Ma contributes to drier climates and could have led to the observed damping of sediment cyclicity. Eccentricity-modulated precession dominates the orbitally driven climate response in the NHB region. High obliquity further amplifies summer precipitation through the seasonal shifts in the tropical rainfall belt. Regions with other proxy records are also assessed, providing guidance toward an integrated picture of global astronomical climate forcing in the Late Triassic and ultimately of other periods in Earth history.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3