Continuous modeling of creased annuli with tunable bistable and looping behaviors

Author:

Yu Tian1ORCID,Marmo Francesco2ORCID,Cesarano Pasquale2,Adriaenssens Sigrid1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544

2. Department of Structures for Engineering and Architecture, University of Naples Federico II, 80131, Naples, Italy

Abstract

Creases are purposely introduced to thin structures for designing deployable origami, artistic geometries, and functional structures with tunable nonlinear mechanics. Modeling the mechanics of creased structures is challenging because creases introduce geometric discontinuity and often have complex mechanical responses due to local material damage. In this work, we propose a continuous description of the sharp geometry of creases and apply it to the study of creased annuli, made by introducing radial creases to annular strips with the creases annealed to behave elastically. We find that creased annuli have generic bistability and can be folded into various compact shapes, depending on the crease pattern and the overcurvature of the flat annulus. We use a regularized Dirac delta function (RDDF) to describe the geometry of a crease, with the finite spike of the RDDF capturing the localized curvature. Together with anisotropic rod theory, we solve the nonlinear mechanics of creased annuli, with its stability determined by the standard conjugate point test. We find excellent agreement between precision tabletop models, numerical predictions from our analytical framework, and modeling results from finite element simulations. We further show that by varying the rest curvature of the thin strip, dynamic switches between different states of creased annuli can be achieved, which could inspire the design of deployable and morphable structures. We believe that our smooth description of discontinuous geometries will benefit the mechanical modeling and design of a wide spectrum of engineering structures that embrace geometric and material discontinuities.

Funder

National Science Foundation

Princeton Global Collaborative Networks

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3