Emergence of dynamic properties in network hypermotifs

Author:

Adler Miri1,Medzhitov Ruslan234ORCID

Affiliation:

1. Broad Institute of MIT and Harvard, Cambridge, MA 02142

2. HHMI, Yale University School of Medicine, New Haven, CT 06510

3. Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510

4. The Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, CT 06510

Abstract

Networks are fundamental for our understanding of complex systems. The study of networks has uncovered common principles that underlie the behavior of vastly different fields of study, including physics, biology, sociology, and engineering. One of these common principles is the existence of network motifs—small recurrent patterns that can provide certain features that are important for the specific network. However, it remains unclear how network motifs are joined in real networks to make larger circuits and what properties emerge from interactions between network motifs. Here, we develop a framework to explore the mesoscale-level behavior of complex networks. Considering network motifs as hypernodes, we define the rules for their interaction at the network’s next level of organization. We develop a method to infer the favorable arrangements of interactions between network motifs into hypermotifs from real evolved and designed network data. We mathematically explore the emergent properties of these higher-order circuits and their relations to the properties of the individual minimal circuit components they combine. We apply this framework to biological, neuronal, social, linguistic, and electronic networks and find that network motifs are not randomly distributed in real networks but are combined in a way that both maintains autonomy and generates emergent properties. This framework provides a basis for exploring the mesoscale structure and behavior of complex systems where it can be used to reveal intermediate patterns in complex networks and to identify specific nodes and links in the network that are the key drivers of the network’s emergent properties.

Funder

Howard Hughes Medical Institute

European Molecular Biology Organization

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3