Altered integration of excitatory inputs onto the basal dendrites of layer 5 pyramidal neurons in a mouse model of Fragile X syndrome

Author:

Mitchell Diana E.12,Miranda-Rottmann Soledad12ORCID,Blanchard Maxime1,Araya Roberto12ORCID

Affiliation:

1. Department of Neurosciences, Faculty of Medicine, University of Montreal, Montréal QC H3T 1C5, Canada

2. CHU Ste-Justine Research Center, Montréal, QC H3T 1C5, Canada

Abstract

Layer 5 (L5) pyramidal neurons receive predictive and sensory inputs in a compartmentalized manner at their apical and basal dendrites, respectively. To uncover how integration of sensory inputs is affected in autism spectrum disorders (ASD), we used two-photon glutamate uncaging to activate spines in the basal dendrites of L5 pyramidal neurons from a mouse model of Fragile X syndrome (FXS), the most common genetic cause of ASD. While subthreshold excitatory inputs integrate linearly in wild-type animals, surprisingly those with FXS summate sublinearly, contradicting what would be expected of sensory hypersensitivity classically associated with ASD. We next investigated the mechanism underlying this sublinearity by performing knockdown of the regulatory β4 subunit of BK channels, which rescued the synaptic integration, a result that was corroborated with numerical simulations. Taken together, these findings suggest that there is a differential impairment in the integration of feedforward sensory and feedback predictive inputs in L5 pyramidal neurons in FXS and potentially other forms of ASD, as a result of specifically localized subcellular channelopathies. These results challenge the traditional view that FXS and other ASD are characterized by sensory hypersensitivity, proposing instead a hyposensitivity of sensory inputs and hypersensitivity of predictive inputs onto cortical neurons.

Funder

The Canadian Institutes of Health Research

Canada Foundation for Innovation

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Scottish Rite Charitable Foundation of Canada

Fonds de recherche du Québec Santé

Herber Jesper postdoctoral fellowship at Université of Montréal

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3