Palmitoylation of the pore-forming subunit of Ca(v)1.2 controls channel voltage sensitivity and calcium transients in cardiac myocytes

Author:

Kuo Chien-Wen S.1ORCID,Dobi Sara1,Gök Caglar1ORCID,Da Silva Costa Ana1ORCID,Main Alice1ORCID,Robertson-Gray Olivia1,Baptista-Hon Daniel23ORCID,Wypijewski Krzysztof J.1ORCID,Costello Hannah2ORCID,Hales Tim G.2ORCID,MacQuaide Niall14ORCID,Smith Godfrey L.1,Fuller William1ORCID

Affiliation:

1. School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8QQ, UK

2. Division of Systems Medicine, Institute of Academic Anaesthesia, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK

3. Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078 China

4. School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK

Abstract

Mammalian voltage-activated L-type Ca 2+ channels, such as Ca(v)1.2, control transmembrane Ca 2+ fluxes in numerous excitable tissues. Here, we report that the pore-forming α1C subunit of Ca(v)1.2 is reversibly palmitoylated in rat, rabbit, and human ventricular myocytes. We map the palmitoylation sites to two regions of the channel: The N terminus and the linker between domains I and II. Whole-cell voltage clamping revealed a rightward shift of the Ca(v)1.2 current–voltage relationship when α1C was not palmitoylated. To examine function, we expressed dihydropyridine-resistant α1C in human induced pluripotent stem cell-derived cardiomyocytes and measured Ca 2+ transients in the presence of nifedipine to block the endogenous channels. The transients generated by unpalmitoylatable channels displayed a similar activation time course but significantly reduced amplitude compared to those generated by wild-type channels. We thus conclude that palmitoylation controls the voltage sensitivity of Ca(v)1.2. Given that the identified Ca(v)1.2 palmitoylation sites are also conserved in most Ca(v)1 isoforms, we propose that palmitoylation of the pore-forming α1C subunit provides a means to regulate the voltage sensitivity of voltage-activated Ca 2+ channels in excitable cells.

Funder

British Heart Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3