A Eurasian avian-like H1N1 swine influenza reassortant virus became pathogenic and highly transmissible due to mutations in its PA gene

Author:

Meng Fei1,Yang Huanliang1,Qu Zhiyuan1,Chen Yan1,Zhang Yijie1,Zhang Yaping1,Liu Liling1,Zeng Xianying1,Li Chengjun12,Kawaoka Yoshihiro345ORCID,Chen Hualan12

Affiliation:

1. State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, People’s Republic of China

2. Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, People’s Republic of China

3. Division of Virology, Department of Microbiology and Immunology, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan

4. The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan

5. Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711

Abstract

Previous studies have shown that the Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses circulated widely in pigs around the world and formed multiple genotypes by acquiring non-hemagglutinin and neuraminidase segments derived from other swine influenza viruses. Swine influenza control is not a priority for the pig industry in many countries, and it is worrisome that some strains may become more pathogenic and/or transmissible during their circulation in nature. Our routine surveillance indicated that the EA H1N1 viruses obtained different internal genes from different swine influenza viruses and formed various new genotypes. In this study, we found that a naturally isolated swine influenza reassortant, A/swine/Liaoning/265/2017 (LN265), a representative strain of one of the predominant genotypes in recent years, is lethal in mice and transmissible in ferrets. LN265 contains the hemagglutinin, neuraminidase, and matrix of the EA H1N1 virus; the basic polymerase 2, basic polymerase 1, acidic polymerase (PA), and nucleoprotein of the 2009 H1N1 pandemic virus; and the nonstructural protein of the North American triple-reassortment H1N2 virus. By generating and testing a series of reassortants and mutants, we found that four gradually accumulated mutations in PA are responsible for the increased pathogenicity and transmissibility of LN265. We further revealed that these mutations increase the messenger RNA transcription of viral proteins by enhancing the endonuclease cleavage activity and viral RNA–binding ability of the PA protein. Our study demonstrates that EA H1N1 swine influenza virus became pathogenic and transmissible in ferrets by acquiring key mutations in PA and provides important insights for monitoring field strains with pandemic potential.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3