Unveiling the mechanism for selective cleavage of C-C bonds in sugar reactions on tungsten trioxide–based catalysts

Author:

Liu Yue1,Zhang Wei1,Hao Cong2ORCID,Wang Shuai2ORCID,Liu Haichao1ORCID

Affiliation:

1. Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

2. State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

Abstract

Conversion of naturally occurring sugars, the most abundant biomass resources on Earth, to fuels and chemicals provides a sustainable and carbon-neutral alternative to the current fossil resource–based processes. Tungsten-based catalysts (e.g., WO 3 ) are efficient for selectively cleaving C-C bonds of sugars to C 2,3 oxygenate intermediates (e.g., glycolaldehyde) that can serve as platform molecules with high viability and versatility in the synthesis of various chemicals. Such C-C bond cleavage follows a mechanism distinct from the classical retro-aldol condensation. Kinetic, isotope 13 C-labeling, and spectroscopic studies and theoretical calculations, reveal that the reaction proceeds via a surface tridentate complex as the critical intermediate on WO 3 , formed by chelating both α- and β-hydroxyls of sugars, together with the carbonyl group, with two adjacent tungsten atoms (W-O-W) contributing to the β-C-C bond cleavage. This mechanism provides insights into sugar chemistry and enables the rational design of catalytic sites and reaction pathways toward the efficient utilization of sugar-based feedstocks.

Funder

National Natural Science Foundation of China

CAS | ICCAS | Beijing National Laboratory for Molecular Sciences

MOST | National Key Research and Development Program of China

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3