Affiliation:
1. Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, 4058 Basel, Switzerland
Abstract
Adaptation is a running theme in biology. It allows a living system to survive and thrive in the face of unpredictable environments by maintaining key physiological variables at their desired levels through tight regulation. When one such variable is maintained at a certain value at the steady state despite perturbations to a single input, this property is called robust perfect adaptation (RPA). Here we address and solve the fundamental problem of maximal RPA (maxRPA), whereby, for a designated output variable, RPA is achieved with respect to perturbations in virtually all network parameters. In particular, we show that the maxRPA property imposes certain structural constraints on the network. We then prove that these constraints are fully characterized by simple linear algebraic stoichiometric conditions which differ between deterministic and stochastic descriptions of the dynamics. We use our results to derive a new internal model principle (IMP) for biomolecular maxRPA networks, akin to the celebrated IMP in control theory. We exemplify our results through several known biological examples of robustly adapting networks and construct examples of such networks with the aid of our linear algebraic characterization. Our results reveal the universal requirements for maxRPA in all biological systems, and establish a foundation for studying adaptation in general biomolecular networks, with important implications for both systems and synthetic biology.
Publisher
Proceedings of the National Academy of Sciences
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献