Ice friction at the nanoscale

Author:

Baran Łukasz1ORCID,Llombart Pablo2ORCID,Rżysko Wojciech1ORCID,MacDowell Luis G.3ORCID

Affiliation:

1. Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria-Curie-Sklodowska University in Lublin, Lublin, Poland

2. Departamento de Física Teórica de la Materia Condensada, Instituto Nicolás Cabrera, Universidad Autónoma de Madrid 28049 Madrid Spain

3. Departamento de Química-Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid 28040 Madrid, Spain

Abstract

The origin of ice slipperiness has been a matter of great controversy for more than a century, but an atomistic understanding of ice friction is still lacking. Here, we perform computer simulations of an atomically smooth substrate sliding on ice. In a large temperature range between 230 and 266 K, hydrophobic sliders exhibit a premelting layer similar to that found at the ice/air interface. On the contrary, hydrophilic sliders show larger premelting and a strong increase of the first adsorption layer. The nonequilibrium simulations show that premelting films of barely one-nanometer thickness are sufficient to provide a lubricating quasi-liquid layer with rheological properties similar to bulk undercooled water. Upon shearing, the films display a pattern consistent with lubricating Couette flow, but the boundary conditions at the wall vary strongly with the substrate’s interactions. Hydrophobic walls exhibit large slip, while hydrophilic walls obey stick boundary conditions with small negative slip. By compressing ice above atmospheric pressure, the lubricating layer grows continuously, and the rheological properties approach bulk-like behavior. Below 260 K, the equilibrium premelting films decrease significantly. However, a very large slip persists on the hydrophobic walls, while the increased friction on hydrophilic walls is sufficient to melt ice and create a lubrication layer in a few nanoseconds. Our results show that the atomic-scale frictional behavior of ice is a combination of spontaneous premelting, pressure melting, and frictional heating.

Funder

MEC | Agencia Estatal de Investigación

Ministerio de Ciencia e Innovación

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Characterizing Surface Ice-Philicity Using Molecular Simulations and Enhanced Sampling;The Journal of Physical Chemistry B;2023-06-28

2. Ice breakloose friction;The Journal of Chemical Physics;2023-06-15

3. Sliding friction on ice;The Journal of Chemical Physics;2023-05-01

4. Self-diffusion and shear viscosity for the TIP4P/Ice water model;The Journal of Chemical Physics;2023-02-08

5. Rubber-ice friction;Friction;2023-01-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3