Seismic detection of a deep mantle discontinuity within Mars by InSight

Author:

Huang Quancheng12ORCID,Schmerr Nicholas C.1ORCID,King Scott D.3,Kim Doyeon14,Rivoldini Attilio5,Plesa Ana-Catalina6,Samuel Henri7ORCID,Maguire Ross R.1,Karakostas Foivos18ORCID,Lekić Vedran1ORCID,Charalambous Constantinos9ORCID,Collinet Max6,Myhill Robert10ORCID,Antonangeli Daniele11ORCID,Drilleau Mélanie12,Bystricky Misha13ORCID,Bollinger Caroline13,Michaut Chloé14,Gudkova Tamara15ORCID,Irving Jessica C. E.10,Horleston Anna10ORCID,Fernando Benjamin16ORCID,Leng Kuangdai16,Nissen-Meyer Tarje16,Bejina Frederic13,Bozdağ Ebru2,Beghein Caroline17ORCID,Waszek Lauren18,Siersch Nicki C.11,Scholz John-Robert19,Davis Paul M.17,Lognonné Philippe7,Pinot Baptiste12,Widmer-Schnidrig Rudolf20ORCID,Panning Mark P.21,Smrekar Suzanne E.21ORCID,Spohn Tilman6ORCID,Pike William T.9,Giardini Domenico4ORCID,Banerdt W. Bruce21ORCID

Affiliation:

1. Department of Geology, University of Maryland, College Park, MD 20742

2. Department of Geophysics, Colorado School of Mines, Golden, CO 80401

3. Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

4. Institute of Geophysics, ETH Zurich, 8092 Zurich, Switzerland

5. Royal Observatory of Belgium, 1180 Brussels, Belgium

6. Institute of Planetary Research, German Aerospace Center, 12489 Berlin, Germany

7. Institut de Physique du Globe de Paris, Université de Paris, CNRS, 75005 Paris, France

8. Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, 40128 Bologna, Italy

9. Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, United Kingdom

10. School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, United Kingdom

11. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, 75005 Paris, France

12. Institut Supérieur de l’Aéronautique et de l’Espace, 31400 Toulouse, France

13. Institut de Recherche en Astrophysique et Planétologie, Université Toulouse III Paul Sabatier, CNRS, 31062 Toulouse, France

14. Laboratoire de Géologie de Lyon–Terre, Planètes, Environnement, Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS, Lyon, 69007 France

15. Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow 123242, Russia

16. Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, United Kingdom

17. Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095

18. Physical Sciences Group, James Cook University, Douglas, QLD 4811, Australia

19. Max Planck Institute for Solar System Research, 37077 Göttingen, Germany

20. Black Forest Observatory, Stuttgart University, 77709 Wolfach, Germany

21. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

Abstract

Constraining the thermal and compositional state of the mantle is crucial for deciphering the formation and evolution of Mars. Mineral physics predicts that Mars’ deep mantle is demarcated by a seismic discontinuity arising from the pressure-induced phase transformation of the mineral olivine to its higher-pressure polymorphs, making the depth of this boundary sensitive to both mantle temperature and composition. Here, we report on the seismic detection of a midmantle discontinuity using the data collected by NASA’s InSight Mission to Mars that matches the expected depth and sharpness of the postolivine transition. In five teleseismic events, we observed triplicated P and S waves and constrained the depth of this discontinuity to be 1,006 ± 40 km by modeling the triplicated waveforms. From this depth range, we infer a mantle potential temperature of 1,605 ± 100 K, a result consistent with a crust that is 10 to 15 times more enriched in heat-producing elements than the underlying mantle. Our waveform fits to the data indicate a broad gradient across the boundary, implying that the Martian mantle is more enriched in iron compared to Earth. Through modeling of thermochemical evolution of Mars, we observe that only two out of the five proposed composition models are compatible with the observed boundary depth. Our geodynamic simulations suggest that the Martian mantle was relatively cold 4.5 Gyr ago (1,720 to 1,860 K) and are consistent with a present-day surface heat flow of 21 to 24 mW/m 2 .

Funder

National Aeronautics and Space Administration

National Science Foundation

UKSA Aurora Research Fellowship

European Research Council under the European Union's Horizon 2020 research and innovation program

CNES funding and ANR MAGIS

STFC/UKSA grant

STFC/UK Space Agency Aurora grant

NASA | Jet Propulsion Laboratory

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference93 articles.

1. Planetary seismology

2. Initial results from the InSight mission on Mars

3. Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data

4. W. B. Banerdt “InSight: A discovery mission to explore the interior of Mars” in 44th Lunar and Planetary Science Conference (2013) vol. 1719 p. 1915.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3