Trabecular bone ontogeny tracks neural development and life history among humans and non-human primates

Author:

Saers Jaap P. P.1ORCID,Gordon Adam D.2ORCID,Ryan Timothy M.3,Stock Jay T.14

Affiliation:

1. Naturalis Biodiversity Center, 2333 CR Leiden, the Netherlands

2. Department of Anthropology, University at Albany, SUNY, Albany, NY 12222

3. Department of Anthropology, Pennsylvania State University, University Park, State College, PA 16802

4. Department of Anthropology, Western University, London, CA ON N6A 5C2

Abstract

Trabecular bone—the spongy bone inside marrow cavities—adapts to its mechanical environment during growth and development. Trabecular structure can therefore be interpreted as a functional record of locomotor behavior in extinct vertebrates. In this paper, we expand upon traditional links between form and function by situating ontogenetic trajectories of trabecular bone in four primate species into the broader developmental context of neural development, locomotor control, and ultimately life history. Our aim is to show that trabecular bone structure provides insights into ontogenetic variation in locomotor loading conditions as the product of interactions between increases in body mass and neuromuscular maturation. Our results demonstrate that age-related changes in trabecular bone volume fraction (BV/TV) are strongly and linearly associated with ontogenetic changes in locomotor kinetics. Age-related variation in locomotor kinetics and BV/TV is in turn strongly associated with brain and body size growth in all species. These results imply that age-related variation in BV/TV is a strong proxy for both locomotor kinetics and neuromuscular maturation. Finally, we show that distinct changes in the slope of age-related variation in bone volume fraction correspond to the age of the onset of locomotion and the age of locomotor maturity. Our findings compliment previous studies linking bone development to locomotor mechanics by providing a fundamental link to brain development and life history. This implies that trabecular structure of fossil subadults can be a proxy for the rate of neuromuscular maturation and major life history events like locomotor onset and the achievement of adult-like locomotor repertoires.

Funder

National Science Foundation

UKRI | Biotechnology and Biological Sciences Research Council

DM McDonald Fund

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3