Mitochondrial control of microglial phagocytosis by the translocator protein and hexokinase 2 in Alzheimer’s disease

Author:

Fairley Lauren H.1,Lai Kei Onn1ORCID,Wong Jia Hui1ORCID,Chong Wei Jing1ORCID,Vincent Anselm Salvatore1,D’Agostino Giuseppe2ORCID,Wu Xiaoting3ORCID,Naik Roshan R.1ORCID,Jayaraman Anusha4ORCID,Langley Sarah R.2ORCID,Ruedl Christiane3ORCID,Barron Anna M.1ORCID

Affiliation:

1. Neurobiology of Aging and Disease Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore

2. Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore

3. School of Biological Sciences, Nanyang Technological University Singapore, 637551, Singapore

4. Center for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 308232, Singapore

Abstract

Microglial phagocytosis is an energetically demanding process that plays a critical role in the removal of toxic protein aggregates in Alzheimer’s disease (AD). Recent evidence indicates that a switch in energy production from mitochondrial respiration to glycolysis disrupts this important protective microglial function and may provide therapeutic targets for AD. Here, we demonstrate that the translocator protein (TSPO) and a member of its mitochondrial complex, hexokinase-2 (HK), play critical roles in microglial respiratory-glycolytic metabolism and phagocytosis. Pharmacological and genetic loss-of-function experiments showed that TSPO is critical for microglial respiratory metabolism and energy supply for phagocytosis, and its expression is enriched in phagocytic microglia of AD mice. Meanwhile, HK controlled glycolytic metabolism and phagocytosis via mitochondrial binding or displacement. In cultured microglia, TSPO deletion impaired mitochondrial respiration and increased mitochondrial recruitment of HK, inducing a switch to glycolysis and reducing phagocytosis. To determine the functional significance of mitochondrial HK recruitment, we developed an optogenetic tool for reversible control of HK localization. Displacement of mitochondrial HK inhibited glycolysis and improved phagocytosis in TSPO-knockout microglia. Mitochondrial HK recruitment also coordinated the inflammatory switch to glycolysis that occurs in response to lipopolysaccharide in normal microglia. Interestingly, cytosolic HK increased phagocytosis independent of its metabolic activity, indicating an immune signaling function. Alzheimer’s beta amyloid drastically stimulated mitochondrial HK recruitment in cultured microglia, which may contribute to microglial dysfunction in AD. Thus, targeting mitochondrial HK may offer an immunotherapeutic approach to promote phagocytic microglial function in AD.

Funder

Nanyang Technological University

Ministry of Education - Singapore

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3