Author:
Dose Marei,Emmanuel Akinola Olumide,Chaumeil Julie,Zhang Jiangwen,Sun Tianjiao,Germar Kristine,Aghajani Katayoun,Davis Elizabeth M.,Keerthivasan Shilpa,Bredemeyer Andrea L.,Sleckman Barry P.,Rosen Steven T.,Skok Jane A.,Le Beau Michelle M.,Georgopoulos Katia,Gounari Fotini
Abstract
Deregulated activation of β-catenin in cancer has been correlated with genomic instability. During thymocyte development, β-catenin activates transcription in partnership with T-cell–specific transcription factor 1 (Tcf-1). We previously reported that targeted activation of β-catenin in thymocytes (CAT mice) induces lymphomas that depend on recombination activating gene (RAG) and myelocytomatosis oncogene (Myc) activities. Here we show that these lymphomas have recurring Tcra/Myc translocations that resulted from illegitimate RAG recombination events and resembled oncogenic translocations previously described in human T-ALL. We therefore used the CAT animal model to obtain mechanistic insights into the transformation process. ChIP-seq analysis uncovered a link between Tcf-1 and RAG2 showing that the two proteins shared binding sites marked by trimethylated histone-3 lysine-4 (H3K4me3) throughout the genome, including near the translocation sites. Pretransformed CAT thymocytes had increased DNA damage at the translocating loci and showed altered repair of RAG-induced DNA double strand breaks. These cells were able to survive despite DNA damage because activated β-catenin promoted an antiapoptosis gene expression profile. Thus, activated β-catenin promotes genomic instability that leads to T-cell lymphomas as a consequence of altered double strand break repair and increased survival of thymocytes with damaged DNA.
Publisher
Proceedings of the National Academy of Sciences
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献