Metabolic theory and taxonomic identity predict nutrient recycling in a diverse food web

Author:

Allgeier Jacob Edward,Wenger Seth J.,Rosemond Amy D.ORCID,Schindler Daniel E.,Layman Craig A.

Abstract

Reconciling the degree to which ecological processes are generalizable among taxa and ecosystems, or contingent on the identity of interacting species, remains a critical challenge in ecology. Ecological stoichiometry (EST) and metabolic theory of ecology (MTE) are theoretical approaches used to evaluate how consumers mediate nutrient dynamics and energy flow through ecosystems. Recent theoretical work has explored the utility of these theories, but empirical tests in species-rich ecological communities remain scarce. Here we use an unprecedented dataset collected from fishes and dominant invertebrates (n = 900) in a diverse subtropical coastal marine community (50 families, 72 genera, 102 species; body mass range: 0.04–2,597 g) to test the utility of EST and MTE in predicting excretion rates of nitrogen (EN), phosphorus (EP), and their ratio (ENP). Body mass explained a large amount of the variation in EN and EP but not ENP. Strong evidence in support of the MTE 3/4 allometric scaling coefficient was found for EP, and for EN only after accounting for variation in excretion rates among taxa. In all cases, including taxonomy in models substantially improved model performance, highlighting the importance of species identity for this ecosystem function. Body nutrient content and trophic position explained little of the variation in EN, EP, or ENP, indicating limited applicability of basic predictors of EST. These results highlight the overriding importance of MTE for predicting nutrient flow through organisms, but emphasize that these relationships still fall short of explaining the unique effects certain species can have on ecological processes.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3