APOBEC3B expression in breast cancer reflects cellular proliferation, while a deletion polymorphism is associated with immune activation

Author:

Cescon David W.,Haibe-Kains Benjamin,Mak Tak W.

Abstract

Genomic sequencing studies of breast and other cancers have identified patterns of mutations that have been attributed to the endogenous mutator activity of APOBEC3B (A3B), a member of the AID/APOBEC family of cytidine deaminases. A3B gene expression is increased in many cancers, but its upstream drivers remain undefined. Furthermore, there exists a common germ-line deletion polymorphism (A3Bdel), which has been associated with a paradoxical increase in breast cancer risk. To examine causes and consequences of A3B expression and its constitutive absence in breast cancer, we analyzed two large clinically annotated genomic datasets [The Cancer Genome Atlas (TCGA) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)]. We confirmed that A3B expression is associated with aggressive clinicopathologic characteristics and adverse outcomes and show that A3B expression is highly correlated with proliferative features (mitosis and cell cycle-related gene expression) in breast and 15 of 16 other solid tumor types. However, breast cancers arising in homozygous A3Bdel individuals with A3B absent did not differ in these features, indicating that A3B expression is a reflection rather than a direct cause of increased proliferation. Using gene set enrichment analysis (GSEA), we detected a pattern of immune activation in A3Bdel breast cancers, which seems to be related to hypermutation arising in A3Bdel carriers. Together, these results provide an explanation for A3B overexpression and its prognostic effect, giving context to additional study of this mutator as a cancer biomarker or putative drug target. In addition, although immune features of A3Bdel require additional study, these findings nominate the A3Bdel polymorphism as a potential predictor for cancer immunotherapy.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3