Author:
Kropat Janette,Gallaher Sean D.,Urzica Eugen I.,Nakamoto Stacie S.,Strenkert Daniela,Tottey Stephen,Mason Andrew Z.,Merchant Sabeeha S.
Abstract
Inorganic elements, although required only in trace amounts, permit life and primary productivity because of their functions in catalysis. Every organism has a minimal requirement of each metal based on the intracellular abundance of proteins that use inorganic cofactors, but elemental sparing mechanisms can reduce this quota. A well-studied copper-sparing mechanism that operates in microalgae faced with copper deficiency is the replacement of the abundant copper protein plastocyanin with a heme-containing substitute, cytochrome (Cyt) c6. This switch, which is dependent on a copper-sensing transcription factor, copper response regulator 1 (CRR1), dramatically reduces the copper quota. We show here that in a situation of marginal copper availability, copper is preferentially allocated from plastocyanin, whose function is dispensable, to other more critical copper-dependent enzymes like Cyt oxidase and a ferroxidase. In the absence of an extracellular source, copper allocation to Cyt oxidase includes CRR1-dependent proteolysis of plastocyanin and quantitative recycling of the copper cofactor from plastocyanin to Cyt oxidase. Transcriptome profiling identifies a gene encoding a Zn-metalloprotease, as a candidate effecting copper recycling. One reason for the retention of genes encoding both plastocyanin and Cyt c6 in algal and cyanobacterial genomes might be because plastocyanin provides a competitive advantage in copper-depleted environments as a ready source of copper.
Funder
HHS | National Institutes of Health
Publisher
Proceedings of the National Academy of Sciences
Reference55 articles.
1. Kaim W Schwederski B (1994) Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life—An Introduction and Guide (Wiley, Chichester, UK)
2. Copper and the biological evolution
3. Metal ions in biological catalysis: from enzyme databases to general principles
4. Copper Deficiency in Humans
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献