Flies expand the repertoire of protein structures that bind ice

Author:

Basu Koli,Graham Laurie A.,Campbell Robert L.,Davies Peter L.

Abstract

An antifreeze protein (AFP) with no known homologs has been identified in Lake Ontario midges (Chironomidae). The midge AFP is expressed as a family of isoforms at low levels in adults, which emerge from fresh water in spring before the threat of freezing temperatures has passed. The 9.1-kDa major isoform derived from a preproprotein precursor is glycosylated and has a 10-residue tandem repeating sequence xxCxGxYCxG, with regularly spaced cysteines, glycines, and tyrosines comprising one-half its 79 residues. Modeling and molecular dynamics predict a tightly wound left-handed solenoid fold in which the cysteines form a disulfide core to brace each of the eight 10-residue coils. The solenoid is reinforced by intrachain hydrogen bonds, side-chain salt bridges, and a row of seven stacked tyrosines on the hydrophobic side that forms the putative ice-binding site. A disulfide core is also a feature of the similar-sized beetle AFP that is a β-helix with seven 12-residue coils and a comparable circular dichroism spectrum. The midge and beetle AFPs are not homologous and their ice-binding sites are radically different, with the latter comprising two parallel arrays of outward-pointing threonines. However, their structural similarities is an amazing example of convergent evolution in different orders of insects to cope with change to a colder climate and provide confirmation about the physical features needed for a protein to bind ice.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3