The impact of herbivore–plant coevolution on plant community structure

Author:

Becerra Judith X.

Abstract

Coevolutionary theory proposes that the diversity of chemical structures found in plants is, in large part, the result of selection by herbivores. Because herbivores often feed on chemically similar plants, they should impose selective pressures on plants to diverge chemically or bias community assembly toward chemical divergence. Using a coevolved interaction between a group of chrysomelid beetles and their host plants, I tested whether coexisting plants of the Mexican tropical dry forest tend to be chemically more dissimilar than random. Results show that some of the communities are chemically overdispersed and that overdispersion is related to the tightness of the interaction between plants and herbivores and the spatial scale at which communities are measured. As coevolutionary specialization increases and spatial scale decreases, communities tend to be more chemically dissimilar. At fairly local scales and where herbivores have tight, one-to-one interactions with plants, communities have a strong pattern of chemical disparity.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference45 articles.

1. Niche lability in the evolution of a Caribbean lizard community

2. Weiher E Keddy PA (1999) The Search for Assembly Rules in Ecological Communities (Cambridge Univ Press, Cambridge, UK).

3. Flowering phenologies of hummingbird plants from the temperate forest of southern South America: is there evidence of competitive displacement?

4. Floral Character Displacement Generates Assemblage Structure of Western Australian Triggerplants (Stylidium)

5. Gilbert LE (1980) in Coevolution of Animals and Plants, eds Gilbert LE Raven PH (Univ of Texas Press, Austin).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3