Region based Feature Fusion of Imperfect Face and Gait cues for human recognition using Median-LBPF and Median-LBPG based PCA followed by LDA

Author:

K Annbuselvi,N Santhi,Sivakumar Dr.S.

Abstract

  Abstract— Conventional computer-based multimodal biometric systems for human recognition based on face and gait cues are mainly based on recognition of perfect images of face and gait. There are situations, where perfect face and gait images may not be available which means probe images are imperfect. This paper proposes new methods Median Local Binary Pattern of Face image (Median-LBPF) and Gait image (Median-LBPG) to extract the features of imperfect face and gait images efficiently representing such imperfect images for better recognition. Initially the given imperfect face and gait images are divided into six overlapped regions called top, bottom, left, right, vertical center, horizontally center overlapped half images. The features of these six overlapped regions of imperfect face and gait images in the spatial domain are extracted by using Median-LBPF and Median-LBPG. Subsequently the dimensionality of the feature sets are reduced by a two stage feature reduction algorithms Principal Component Analysis (PCA) followed by Linear Discriminant Analysis (LDA). Next the individual face features and gait features are normalized to have their values lie within similar ranges and are concatenated at feature level. For classification, Euclidean distance measure is used to calculate the minimum of minimum distance between the six overlapped regions of given imperfect face and gait probe images and the corresponding regions of all six overlapped regions in the training sets. The proposed methods are tested by using publically available data sets ORL face and CASIA gait. The experimental results show that features of a region of face and gait images are adequate for recognition and its average recognition performance is same as perfect face and gait images.

Publisher

Valley International

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3