Affiliation:
1. Department of Civil and Environmental Engineering University of Illinois at Urbana‐Champaign Urbana IL 61801
2. Department of Crop Sciences University of Illinois at Urbana‐Champaign Urbana IL 61801
3. Department of Natural Resources and Environmental Sciences University of Illinois at Urbana‐Champaign Urbana IL 61801
4. Department of Geology University of Illinois at Urbana‐Champaign Urbana IL 61801
Abstract
ABSTRACTPolycyclic aromatic hydrocarbons (PAHs) have earned considerable attention due to their widespread environmental distribution and toxicity. In the environment, PAHs decompose by a variety of biotic and abiotic pathways. In both polar and nonpolar environments, phenanthrene (Phe, a common, three‐ring PAH) is converted by sunlight to more polar products such as 9,10‐phenanthrenequinone (PheQ) and subsequent oxidation products such as the corresponding open‐ring dicarboxylic acid product. Biodegradation of phenanthrene also usually leads to oxidative metabolites, and eventually ends in mineralization. Our experimental objective was to investigate the photodegradation of phenanthrene and determine the effect of reaction products such as PheQ on microbial biodegradation of two‐ and three‐ring PAHs. Abiotic experiments were performed to examine the photolytic breakdown of Phe; Phe was converted to PheQ, which catalyzed its own formation. In biodegradation experiments PheQ (0.04–4 mg/L) caused marked inhibition of naphthalene (Nap) biodegradation by a Burkholderia species; Phe did not. Only 20% of the naphthalene was degraded in the presence of PheQ compared with 75% in the control culture with no PheQ added. No PAH‐degrading cultures were able to use PheQ as sole carbon source; however, the Phe‐degrading enrichment culture dominated by a Sphingomonas species was able to degrade PheQ cometabolically in the presence of Phe. These results may explain why photooxidized phenanthrene‐containing mixtures can resist biodegradation.
Subject
Management, Monitoring, Policy and Law,Pollution,Waste Management and Disposal,Water Science and Technology,Environmental Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献