Modeling the UO2 reduction process

Author:

Galashev Alexander Y.ORCID, ,Abramova Ksenia A.ORCID,Vorob'ev Alexey S.ORCID,Rakhmanova Oksana R.ORCID,Zaikov Yuri P.ORCID, , , ,

Abstract

Methods of molecular dynamics and DFT calculations have been used to study the reduction mechanisms of UO2 as the most representative part of spent nuclear fuel to metallic uranium. It is shown that the critical softening of the combined modulus of elasticity C11-C12 to zero is the reason for the destruction of the UO2 crystal as a result of the removal of oxygen from it. This destruction is accompanied by an order-disorder phase transition in the oxygen subsystem of the crystal under consideration. DFT calculations indicate a continuous decrease in the band gap as oxygen is removed from the UO2 crystal. When the system reaches the composition U2O3, the band gap disappears and the system becomes electrically conductive. The appearance of the dielectric-conductor transition explains the realization of the FFC Cambridge process during the recovery of spent nuclear fuel. The passage of Li+ and Cl– ions of the LiCl melt through cylindrical channels in a UO2 crystal with cross-sectional radii from 0.25 up to 2 nm has been studied. The strength of the external electric field required for the passage of these channels decreases with an increase in the channel cross section, and the number of Cl– ions entering the channel increases. On the walls of the channels that pass ions with charges of both signs, colonies of adsorbed Cl– and Li+ atoms appear separated from each other, between which strong electric fields are formed. The existence of such fields can cause Li+ ions to move deep into the material being reduced.

Publisher

Ural Federal University

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3