The impact of dimethylformamide on the synthesis of graphene quantum dots derived from graphene oxide

Author:

Truong Khuong T.ORCID,Pham Thach H.,Tran Khai V.ORCID

Abstract

Graphene quantum dots (GQDs) have garnered immense interest in recent years due to their unique optical, electrical, and chemical properties, making them promising candidates for various applications in optoelectronics, bioimaging, and sensing. However, enhancing the control over the size, surface chemistry, and optical properties of GQDs remains a significant challenge. In this study, a novel recipe was proposed to successfully synthesize various GQDs via a typical solvothermal process, which has proven to be a versatile and scalable approach. In addition to the main ingredient – graphene oxide suspension, dimethylformamide (DMF) and hydrogen peroxide serving as a cutting agent were added to the reaction mixture. This synthesis method was found to be more promising than the reference one in which DMF was replaced by double distilled water. Through systematic experimentation, we demonstrated that the addition of DMF enables the successful GQD production over a wider range of reaction times; hence, the UV absorption band and photoluminescence properties of GQDs can be better adjusted. The dependence of photoluminescence on the excitation wavelength was observed in the as-prepared materials as they were excited with a range of wavelengths from 360 to 480 nm. The obtained insights not only advance our understanding of GQD synthesis but also open up avenues for tailoring their properties for specific applications.

Publisher

Ural Federal University

Subject

Materials Chemistry,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3