Comparative characteristic of Bi- and La- doped (Ca/Sr)MoO4 -based materials with a defect scheelite-type structure

Author:

Mikhaylovskaya Zoya A.ORCID,Klimova Alexandra V.ORCID,Petrova Sofia A.ORCID,Pankrushina Elizaveta A.ORCID,Buyanova Elena S.ORCID

Abstract

CaMoO4- and SrMoO4-based scheelite-type phases are noteworthy functional materials, whose properties strongly correlate with their structure. This work is devoted to La- or Bi-doped scheelite-type molybdates. The purpose of the present study is to quantify the effect of isolated electron pairs of bismuth on the distortion of the structure and related properties. Conventional solid-state technology was used for the synthesis of (Ca/Sr)1–3xLa2xФxMoO4 and Sr1–3xBi2xФxMoO4, (0.025≤ x ≤ 0.275). The structure was investigated by X-ray powder diffraction and Raman spectroscopy. Rates of structure distortion were characterised by the analysis of the autocorrelation function (AAF) of Raman spectra. Energy gaps were calculated by the Kubelka-Munk method. The conductivity was studied with a.c. impedance spectroscopy. For (Ca/Sr)1−3x(Bi/La)2xФxMoO4 series 0.025 ≤ x ≤ 0.15 compositions show a basic defect scheelite structure, while 0.15 x ≤ 0.225 compositions of Bi-doped samples exhibit tetragonal supercells. The chemical compression of unit cell is more evident in the case of Bi-doping, indicating the preferred orientation of the isolated electron pairs. The distortion of MoO4 polyhedra showed by AAF was more significant for Sr1−3xBi2xФxMoO4 than for Sr1−3xLa2xФxMoO4, the Δcorr parameters for Bi-doped compositions were almost double in comparison with La-doped one in the range of 50–600 cm–1 of the Raman shift. The «critical» x = 0.15 point was also clearly indicated by Δcorr parameter. The AAF of the Raman spectra of solid oxides was shown to be a good tool for prediction of properties and points of phase transitions in solid oxides.

Publisher

Ural Federal University

Subject

Materials Chemistry,General Chemical Engineering,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3