Borated graphite cathodes for low-temperature aluminum electrolysis

Author:

Rudenko A. V.ORCID,Kataev A. A.ORCID,Neupokoeva M. M.,Tkacheva O. Yu.ORCID

Abstract

Electrochemical boriding of the graphite plates in the potassium cryolite based electrolytes was studied. The boriding were carried out in a cell with vertical electrodes. The procedure included 2 stages: 1) electrolysis in the KF–AlF3–KBF4 melt (CR=1.3) at low current density (0.01–0.02 A/cm2), required for the boron reduction, at 700 and 750 °C; 2) electrolysis in the KF–AlF3–Al2O3 melt at higher current density (0.2 A/cm2), required for the aluminum reduction. The optimal conditions of electrodeposition for obtaining the borated wettable cathodes were determined. According to the SEM data, a continuous AlB2 layer with a thickness of 7–10 μm was formed on the graphite surface. The borated graphite was tested as a wetted cathode during the low-temperature aluminum electrolysis. Prolonged electrolysis in a vertical cell with the graphite anode and the borated graphite cathode was carried out in the KF–NaF(10 wt.%)–AlF3–Al2O3 electrolyte (CR=1.5) at 830 °C. After 100 h of electrolysis, the thickness of the AlB2 layer on the graphite surface was 5 μm, while the cathode surface was completely wetted with aluminum. Thus, we demonstrated the feasibility of using the borated graphite cathode as a wettable dripping cathode in the low-temperature aluminum electrolysis in the vertical cell.

Publisher

Ural Federal University

Subject

Materials Chemistry,General Chemical Engineering,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3