Makine Öğrenmesi Yöntemlerine Dayalı Veri Yönetim Sistemi

Author:

Aydın Ülgen1ORCID,Akkaya Gökay1ORCID

Affiliation:

1. ATATÜRK ÜNİVERSİTESİ

Abstract

Veri, bilgiyi edinebilmek için ihtiyaç duyduğumuz temel yapıdır. Geçmişten günümüze teknoloji ile gelişen veri tabanları eğitim ve iş dünyası başta olmak üzere her alanda önemini arttırmakta ve özellikle sensörlerin hayatımızın her adımında yer almaya başlamasıyla attığımız adımlardan yapmayı tercih ettiğimiz alışverişlere kadar hayatımızdaki her şey birer veriye dönüşmektedir. Veriyi anlamlı hale getirebilmek için ise veri ön işleme mekanizmaları devreye sokularak elimizdeki verilerin kullanabileceğimiz şekilde anlamlı olması sağlanmaktadır. Bir veri tabanını ön işleme tabi tuttuğumuzda karşılaştığımız en büyük sorunlardan biri eksik verilerin varlığıdır. Bu sorunun çözümü için kullanılan geleneksel istatistiksel yöntemler günümüz veri yığınlarıyla başa çıkamamakta, gelişen teknolojiyle yerini yapay zekaya bırakmaktadır. Bu makale, veri setlerindeki nümerik eksik verilerin etkili bir şekilde tahmin edilmesi amacıyla geliştirilmiş olan Python tabanlı bir masaüstü uygulamasını ele almaktadır. Uygulama, rastgele orman regresyonu algoritması ve yinelemeli tamamlayıcı modülünü birleştirerek, eksik veri tahmininde güçlü ve yenilikçi bir yaklaşım sunmaktadır. Uygulama dört farklı veri seti üzerinde test edilmiş ve %57 ile %79 arasında bir doğrulukla tahmin yapılmıştır. Bu önemli araç, veri madenciliği ve veri ön işleme konularında uzman olmayan kullanıcılar için dahi kullanımı kolay bir arayüz sunarak, eksik verilerin tahminini optimize etmeyi amaçlamaktadır.

Funder

Atatürk Üniversitesi Bilimsel Araştırma Proje Koordinasyon Birimi

Publisher

Bayburt Universitesi

Reference11 articles.

1. H. T. Moges, K. Dejaeger, W. Lemahieu, and B. Baesens, “A multidimensional analysis of data quality for credit risk management: New insights and challenges,” Information and Management, vol. 50, no. 1, pp. 43–58, 2013, doi: 10.1016/j.im.2012.10.001.

2. H.-T. Moges, K. Dejaeger, W. Lemahieu, and B. Baesens, “A multidimensional analysis of data quality for credit risk management: New insights and challenges,” Information & Management, vol. 50, no. 1, pp. 43–58, Jan. 2013, doi: 10.1016/j.im.2012.10.001.

3. K. Veriler et al., “The Effects of Different Methods Used for Value Imputation Instead of Missing Values on Model Data Fit Statistics,” 2015.

4. Y. Celik, “Comparison of Data Used For Loss Of Data Mining Methods,” 2013. [Online]. Available: https://www.researchgate.net/publication/348787393

5. F. Arslan et al., “Yapay Zekâ Tabanlı Büyük Veri Yönetim Aracı.”

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3