Computational Fluid Dynamics Analysis of Drag Reduction in Bullet via Geometric Modifications

Author:

Demir Hacımurat1ORCID,Çimen Mehmet2ORCID,Yılman Ömer2ORCID,Tekin Erhan2ORCID

Affiliation:

1. AKSARAY ÜNİVERSİTESİ

2. AKSARAY UNIVERSITY, FACULTY OF ENGINEERING, DEPARTMENT OF MECHANICAL ENGINEERING, MECHANICAL ENGINEERING PR.

Abstract

In the field of external ballistics, the geometry (shape and structure) of the projectile plays a significant role. This geometry affects a multitude of variables, including air resistance, stability, range, and accuracy. The objective of this study was to decrease the drag coefficients by making different geometric alterations to the Spitzer-type ogive bullet and examining the flow conditions, Mach number, and pressure distributions around the projectile using a three-dimensional numerical simulation. Upon examination of the results, it was observed that the flow exhibited subsonic stagnation zones and a velocity drop upstream of the nose tip. The flow became slightly supersonic as it expanded around the ogive nose and boattail junction. Expansion fans and recompression shocks were detected at the points where the ogive-shaped nose of the projectile transitions to the body, where the boattail-shaped rear of the projectile transitions to the body, and at the base of the projectile. The pressure coefficient value reached its maximum value of CP=0.7 when the air decelerated and dropped to CP=-0.5 as the projectile transitioned from the nose to the body. A gradual decrease in pressure along the projectile surface resulted in a more consistent and lower pressure coefficient compared to the nose. The A3-type bullet, including the most extensive spiral groove, exhibited a 12.4% enhancement in drag reduction as compared to the original bullet. The B-series of straight grooves exhibited a considerable decrease in drag. Nevertheless, the efficacy of helical grooves in regulating flow separation at the tail surpassed that of other methods. The A-series bullets, namely A2 and A3, were well-suited for applications that demanded little aerodynamic resistance. The B-series bullets exhibited enhancements compared to the conventional design and may be deemed suitable for more straightforward production or design limitations.

Funder

TUBITAK

Publisher

Bayburt Universitesi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3