Abstract
Günümüzde şirketlerin dijital dönüşüm kapsamında yaptığı çalışmalar özellikle pandemi sonrası tüketiciden gelen talebin artmasıyla giderek hız kazanmıştır. Bu bağlamda, E-Ticaret alanında web site ve mobil uygulamalarda müşteriye en uygun ürün önerilerinin sunulması, müşteri ihtiyaçlarının karşılanması ve şirketlerin satış hedeflerinin gerçekleştirilmesi için ürün öneri sistemlerine ihtiyaç duyulmuştur.
Bu alanda yapılan çalışmalar, ürün tipi ve çeşitliliği değişkenlik gösterdiği için çoğu zaman mantıksız ve yanlış ürün önerilerinin tüketicilere sunulmasına yol açtığı, farklı sitelerin ürün önerileri incelendiğinde açıkça görülmüştür. Bu çalışmada, şirketin ürün ve veri yapısına göre en uygun şekilde veri manipülasyonun gerçekleştirilmesi, özelleştirilmiş fonksiyonların yazılması, Metin Benzerliği ve Tekil Değer Ayrışımı algoritmasına dahil olarak en uygun tamamlayıcı ürünlerin gösterilmesi sağlanmıştır. En uygun algoritmanın geliştirilerek yazılımı tamamlanmıştır. Elde edilen ürün önerileri web sitesi ve mobil uygulamada canlıya alınmıştır. Sonuçları Google Analytics üzerinden ve Python kodlarıyla ayrı ayrı gözlemlenmiştir.
Yapılan çalışma sonucunda geliştirilen ürün öneri sisteminin mevcut sisteme kıyasla set halinde satılan ürünlerde %7,62, tekli olarak satılan ürünlerde ise %11,2 oranında daha iyi performans gösterdiği gözlemlenmiştir. Ayrıca ilgili alanın web site ve mobil uygulamada görüntülenme sayısı %7,17, tıklanma sayısı %28,93 artış göstermiştir. Ürün önerilerinin mevcut duruma kıyasla daha mantıklı ve tamamlayıcı olarak daha ilişkili ürün önerileri sunduğu tespit edilmiştir ve ilgili alanlar farklı zamanlarda incelenerek gözlemlenmiştir.