Prediction of anthropometric variables in standing position in Venezuelan direct labor workers

Author:

Labrador Parra AlejandroORCID,Escalona EvelinORCID

Abstract

The present research aims to predict anthropometric variables in workers of direct industrial labor force in bipedestation, with mathematical models or algorithms such as linear or multiple regression models, which facilitate the measurement process reducing costs and time in the research. The methodology was applied to a population sample of 185 workers (131M,54W) of Venezuelan industrial direct labor, located in the industrial zones of Aragua state, being its research level correlational-transversal-epidemiological. The research made use of the statistical procedure of linear and multiple regressions with the support of the mini tab-17 statistical package. From the statistical assumptions, the obtained functions of simple and multiple regression in the anthropometric variables in bipedestation, show us significant models (Average 95 %) for a P-value<0, 05 by age group and sex, which will allow to reduce the costs and time in the anthropometric measurements of the industrial direct labor workers in Venezuela

Publisher

Salud, Ciencia y Tecnologia

Reference13 articles.

1. 1. Vázquez, E (15 de septiembre de 2021). Importancia de la antropometría en el diagnostico nutricional. Proyecto Nodriza. Recuperado: https://proyectonodriza.org/la-antropometria-en-el-diagnostico-nutricional/.

2. 2. Mora, J (2022): Modelos predictivos en salud basados en aprendizaje de maquina (machine learning. 33(6) 583-590. Recuperado: https://www.elsevier.es/es-revista-revista-medica-clinica-las-condes-202-pdf-S0716864022001213.

3. 3.Burgos F. (2017) Predicción de dimensiones antropométricas y capacidad aeróbica en trabajadores de mano de obra directa industrial venezolana, aplicables al diseño ergonómico. (Tesis doctoral no publicada para optar al título de Doctor en Ingeniería). Universidad de Carabobo. Valencia, Venezuela.

4. 4. Ghandi, R. (2018): Support Vector Machine. Towards data sciencie. Recuperado: https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47.

5. 5. Bouza, C. & Santiago, A. (2012). La Minería De Datos: Arboles De Decisión Y Su Aplicación En Estudios Médicos. Modelación Matemática De Fenómenos Del Medio Ambiente Y La Salud. Tomo 2, 64-78. Recuperado: https://rideca.cs.buap.mx/web/files/articulo_itBUo0uWlAaJENf.pdf.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3