Author:
Aljaleel Zainab M.,Ahmed Nahla Y.,Atemimi Yahya K. A
Abstract
Road infrastructure is seriously threatened by heavy vehicle overloading, causing substantial damage, particularly rutting. This study uses advanced finite element analysis (FEA) techniques to improve pavement performance prediction. Six models were created using the ABAQUS/CAE program to evaluate the rutting performance of flexible pavement under overloaded conditions. These models simulated the existing pavement design and a proposed design, each subjected to three axle load configurations: single axle-single tire, tandem axle-dual tire, and tridem axle-dual tire. The research includes conducting surveys on traffic volume and axle load, to precisely evaluate the current traffic situation and identify problems associated with overloading. Core extractions enabled a thorough comparison of the existing pavement's thickness, density, and material characteristics with the proposed design. Based on these findings, a new design for a flexible pavement was developed, focusing on enhancing its ability to withstand rutting. The analysis determines that the existing pavement cannot withstand overloading vehicles, necessitating a 6,67 % increase in the thickness of the surface, a 37,5 % increase in the thickness of the binder, a 50 % increase in the thickness of the base, and a 32 % increase in the thickness of the subbase layers. Significantly, these modifications and improvements to material qualities were discovered to effectively decrease rut depth, an important factor in the durability and performance of pavement
Publisher
Salud, Ciencia y Tecnologia
Reference19 articles.
1. Q. T. Nguyen, H. Di Benedetto, and C. Sauzéat, ‘Linear and nonlinear viscoelastic behaviour of bituminous mixtures’, Materials and Structures/Materiaux et Constructions, vol. 48, no. 7, Jul. 2015 2339–2351.
2. M. Kaushal and J. Rasool, ‘A STUDY ON IMPACT OF VEHICLE OVERLOADING ON JAMMU-SRINAGAR NATIONAL HIGHWAY’, International Journal of Innovative Research in Engineering & Management, 2022.
3. Y. H. Huang, Pavement analysis and design. Pearson/Prentice Hall, 2004.
4. H. Wang et al., ‘Effects of Field Aging on Material Properties and Rutting Performance of Asphalt Pavement’, Materials, vol. 16, no. 1, Jan. 2023.
5. H. Fares et al., ‘Modelling the performance of pavement marking in cold weather conditions’, Structure and Infrastructure Engineering, vol. 8, no. 11, Nov. 2012 1067–1079.