An Efficient Hybrid Deep Learning Framework for Predicting Student Academic Performance

Author:

Viveka M.ORCID,Shanmuga Priya Dr. N.ORCID

Abstract

Introduction: educational data analysis with data mining techniques for enhanced learning is increasing. Voluminous data available through institutions, online educational resources and virtual educational courses could be useful in tracking learning patterns of students. Data mining techniques could be helpful for predicting students’ academic performance from raw data. Conventional Machine Learning (ML) techniques have so far been widely used for predicting this. Methods: however, research available on the Convolutional Neural Networks (CNNs) architecture is very scarce in the context of the academic domain. Therefore, in this work a hybrid CNN model involving 2 different CNN models for forecasting academic performance. The one-dimensional data is converted into two-dimensional equivalent to determine efficiency of the hybrid model which is subsequently compared with many existing. Result: the experimental results are evaluated using various performance metrics like precision, accuracy, recall and F-Score. Conclusion: the proposed hybrid model outperforms-Nearest Neighbour (K-NN), Decision Trees (DTs), and Artificial Neural Network (ANN) in terms of precision, accuracy, recall and F-Score

Publisher

Salud, Ciencia y Tecnologia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3