Author:
Hussein Marwan B.,Mustafa Ali M.,Abdulkareem Makarim H.
Abstract
This work evaluates experimentally the corrosion and tip testing of Ti-13Zr-13Nb joint implant alloys and commercially pure titanium (cp-Ti) covered with YSZ nanoceramic. Through the use of the Taguchi design of experiments (DOE) approach, the dip coating process produced a thin sticky covering. The effects of temperature, YSZ concentration, duration, and the level of Ti alloy substrate grinding during dip coating were investigated using a L9-type orthogonal Taguchi array to determine the deposition yield. The thickness and adhesion tests that were utilized to optimize the dip coating conditions served as the input data, and the Ti alloys were coated using the ideal dip coating technique parameters as previously mentioned. For commercial Ti, the ideal values for YSZ coating thickness and adhesion were 60°C, 10 seconds, 10 % concentration, and 250 degrees of grinding; correspondingly, for Ti-13Zr-13Nb, the ideal values were 60°C, 10 seconds, 15 % concentration, and 400 degrees of grinding. For both Cp-Ti and Ti-13Zr-13Nb, the obtained thickness and removal area (adhesion) were 58,5 µm and 11,45 %, respectively, and 69,5µm and 9,33 %, respectively. High-resolution scanning electron microscopy (FE-SEM) images were used to study the coated alloys; optical microscopy and AFM were used to identify the microstructure and thickness measurements of the coated surfaces; EDAX was used to analyze the coating composition; and XRD was used to analyze the formed phases. The optimized coated Ti alloys' corrosion resistance was investigated in simulated body fluid (SBF) using electrochemical methods such as cyclic polarization and Tafel polarization, and the adhesion strength of the coatings was measured using a tip tester. The following corrosion-resistant values were used to compare Ti-13Zr-13Nb and coated Cp-Ti: In Ringer's solution at 37°C, both coating alloys—Cp-Ti and Ti-13Zr-13Nb—improved corrosion resistance; however, the coated Ti-13Zr-13Nb alloy demonstrated greater corrosion resistance than the coated Cp-Ti alloy (5,417×10-3 and 1,042×10-2, respectively)
Publisher
Salud, Ciencia y Tecnologia
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献