On the Post-Heat Behavior of Cement Mortar Containing Mechanically Modified Ground Coal Bottom Ash

Author:

Al Biajaw Mohammad I.,Embong Rahimah,Muthusamy Khairunisa,Abdel Jabar Haneen,Hilal Nahla,Mohamed Nazri And Fadzli

Abstract

Coal is widely recognized as a significant and essential fuel source due to its capacity to undergo combustion and produce heat in many different regions worldwide. Over the course of many decades, there has been a notable rise in power usage among individuals, thus resulting in an upsurge in the utilization of coal. The growth of mankind has a parallel rising trajectory with the utilization of cement in the building industry, as well as a corresponding rise in cement manufacturing. These two phenomena significantly contribute to the escalation of carbon dioxide (CO2) emissions and the improper disposal of coal ash, both of which pose significant environmental hazards. Coal-fired thermal power plants generate many waste products from industry, including coal-bottom ash (CBA), which may be effectively used in the production of mortar or concrete. This practice not only promotes the adoption of sustainable construction materials but also encourages the utilization of these wastes. In contrast, it is worth noting that cement manufacture yields a significant quantity of carbon dioxide emissions, so exerting a detrimental influence on the ecosystem. The reduction of environmental deterioration may be achieved by substituting cement with waste products. The substitution of Portland cement with reutilized coal combustion products has the potential to provide significant environmental and infrastructural advantages. This study presents an experimental investigation into the post-heat performance of cement mortars including ground coal bottom ash (CBA). To achieve this objective, an investigation was conducted to assess the strength qualities, residual strength, and mass losses of mortar specimens. These specimens comprised varying proportions (10 %, 20 %, 30 %, and 40 %) of CBA as a substitute for cement. To perform the heating procedure, samples were subjected to temperatures of 200°C, 400°C, and 600°C, which corresponded to room temperatures. The findings indicate that the use of ground CBA up to a proportion of 20 % yields mortar with the maximum value of compressive strength compared with the control sample. The use of a substantial amount of ground CBA has been shown to produce the most significant reduction in mass and decrease in strength when subjected to high temperatures. As a result, the residual strength of concrete experiences a decrease of 33,65 % when exposed to a temperature of 600°C in conventional concrete while for CBA in concrete decreases around 40,9 %. In general, the integration of ground CBA alternatives as an alternative to cement would result in a decrease in the need for the manufacture of cement and the environmental pollution associated with CBA discharge

Publisher

Salud, Ciencia y Tecnologia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3