A Hybrid Rider Optimization with Deep Learning Driven Intrusion Detection Farmwork in Wireless Sensor Network

Author:

Sedhuramalingam KORCID,Saravana Kumar Dr.NORCID

Abstract

Introduction: An array of hazards currently exists in cyberspace, prompting extensive research to tackle these concerns. Intrusion Detection Systems (IDS) are a mechanism used to provide security in Wireless Sensor Networks (WSN). The IDS continue to encounter significant challenges in accurately identifying unknown attacks. Conventional Intrusion Detection Systems (IDS) commonly rely on Deep Learning (DL) algorithms, which utilise binary classifiers to classify attacks. The data dimension attribute is affected inside large-scale high-dimensional data sets. Methods: This research introduces a hybrid GFSO (HGFSO) model combined with Deep Learning Driven Intrusion Detection (HGFSO-DLIDS) to tackle this problem. The HGFSO approach is developed by merging the parameter selection methods of the Felis Margarita Swarm Optimisation (FMSO), the Grampus optimisation algorithm (GOA), and the Deep Convolutional Neural Network (DCNN) with BiLSTM (Bidirectional Long Short-Term Memory) algorithm. Results: The model training utilised real-time traffic statistics, including the KDDCup 99 and WSN-DS datasets. After being trained and validated using the datasets, the model's performance is assessed by multi-class classification, achieving accuracy rates of 99.89% and 99.64% respectively.Conclusion: As a result, this occurrence leads to a decrease in the overall effectiveness of detecting assaults. Deep learning may enhance the creation of an intrusion detection system by eliminating complex features in the raw data, resulting in a more precise classification method.

Publisher

Salud, Ciencia y Tecnologia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3