Deep Learning Applied on Arabic language for punctuation marks prediction

Author:

Aboutaib AbdelkarimORCID,Zeroual ImadORCID,EL Allaoui AhmadORCID

Abstract

In the absence of explicit punctuation, the Arabic language's semantic and contextual nature poses a unique challenge, necessitating the reintroduction of punctuation marks for elucidating sentence structure and meaning. We investigate the impact of sentence length on punctuation prediction in the context of Arabic language processing. Leveraging Deep Neural Networks (DNNs), specifically Bi-Directional Long Short-Term Memory (Bi-LSTM) models. Our study goes beyond restoration, aiming to accurately predict punctuation marks in unprocessed text. The investigation focuses on five primary punctuation marks (.?,: and !), contributing to a more comprehensive understanding of predicting diverse punctuation marks in Arabic texts and we have achieved 85 % in accuracy . This research not only advances our understanding of Arabic language processing but also serves as a broader exploration of the relationship between sentence length and punctuation prediction.

Publisher

Salud, Ciencia y Tecnologia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3