Classifying alzheimer's disease from SMRI data using a hybrid deep learning approaches

Author:

Emmanuel Mathews,Jabez J.

Abstract

The chance of developing "Alzheimer's Disease (AD)" increases every 5 years after 65 years of age, making it a particularly common form of neurodegenerative disorder among the older population. The use of "Magnetic Resonance Imaging (MRI)" to diagnose AD has grown in popularity in recent years. A further benefit of MRI is that it provides excellent contrast and exquisite structural detail. As a result, some studies have used biological markers backed by "structural MRI (sMRI)" to separate AD populations, which indicate differences in brain tissue size and degradation of the nervous system. The lack of properly segmented regions and essential features by the existing models might affect classification accuracy for AD. The categorization of AD in this study is based on sMRI. In this research, the hybrid Deep-Learning Models "SegNet and ResNet (SegResNet)" have been proposed for segmentation, feature extraction, and to classify the AD. SegNet network is used to identify and segment specific brain areas. Edges and circles are the SegNet's first levels, whereas the deeper layers acquire more nuanced and useful features. SegNet's last deconvolution layer produces a wide range of segmented images linked to the 3 categorization labels "Cognitive Normal (CN)", "Mild Cognitive Impairment (MCI)", and "AD" which the machine has earlier found out. To increase classification performance, the attributes of each segmented sMRI image serve as strong features of the labels. To enhance the feature information used for classification, a feature vector is built by combining the values of the pixel intensity of the segmented sMRI images. ResNet-101 classifiers are then used for characterizing vectors to identify the presence or absence of AD or MCI in each sMRI image. In terms of detection and classification accuracy, the proposed SegResNet Model is superior to the existing KNN, EFKNN, AANFIS, and ACS approaches  

Publisher

Salud, Ciencia y Tecnologia

Reference44 articles.

1. Abrol, M. Bhattarai, A. Fedorov, Y. Du, S. Plis, and V. Calhoun, ‘‘Deep residual learning for neuroimaging: An application to predict progression to Alzheimer’s disease,’’ J. Neurosci. Methods, vol. 339, 2020, Art. no. 108701.

2. Basher, B. C. Kim, K. H. Lee, and H. Y. Jung, ‘‘Volumetric feature-based Alzheimer’s disease diagnosis from sMRI data using a convolutional neural network and a deep neural network,’’ IEEE Access, vol. 9, pp. 29870–29882, 2021.

3. Amado DPA, Diaz FAC, Pantoja R del PC, Sanchez LMB. Benefits of Artificial Intelligence and its Innovation in Organizations. AG Multidisciplinar 2023;1:15-15. https://doi.org/10.62486/agmu202315.

4. Batista-Mariño Y, Gutiérrez-Cristo HG, Díaz-Vidal M, Peña-Marrero Y, Mulet-Labrada S, Díaz LE-R. Behavior of stomatological emergencies of dental origin. Mario Pozo Ochoa Stomatology Clinic. 2022-2023. AG Odontologia 2023;1:6-6. https://doi.org/10.62486/agodonto20236.

5. Bhatele KR, Bhadauria SS (2020) Brain structural disorders detection and classification approaches: a review. Artif Intell Rev 53(5):3349–3401.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3